KAGGLE CARDIAC DATA

DATA EXPLORATION AND ANALYSIS

0

SAM LOYD NOVEMBER 2019

KAGGLE CARDIAC DATA CODE BOOK

PROVIDED BY SVETLANA UNLIANOVA AT RYERSON UNIVERSITY

HTTPS://WWW.KAGGLE.COM/SULIANOVA/EDA-CARDIOVASCULAR-DATA/NOTEBOOK#EDA-OF-CADIOVASCULAR-DISEASES-DATA

NUMERICAL DATA

AGE - days

HEIGHT - cm

WEIGHT - kg

SYSTOLIC BLOOD PRESSURE

DIASTOLIC BLOOD PRESSURE

BINARY DATA

GENDER

SMOKING

ALCOHOL

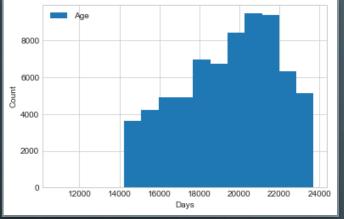
PHYSICAL ACTIVITY

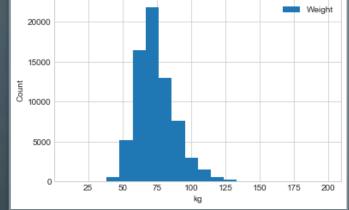
CARDIOVASCULAR DISEASE

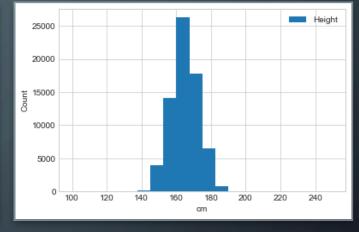
CATEGORICAL DATA

CHOLESTEROL

GLUCOSE


HYPOTHESIS


DOES BEING OVERWEIGHT AS MEASURED BY THE STANDARD BMI FORMULA USING WEIGHT AND HEIGHT, TEND TO INCREASE THE LIKELIHOOD OF HAVING A CARDIOVASCULAR DISEASE?

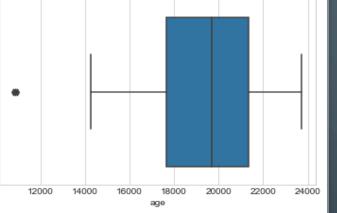

How does gender impact the answer to the question above if at all?

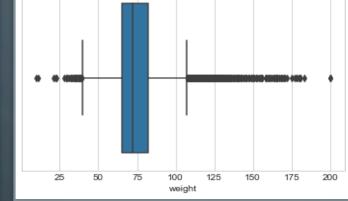
"

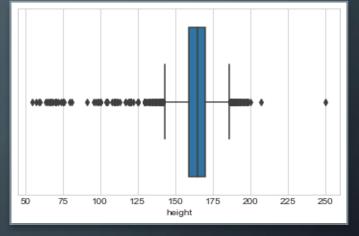
EXAMPLES FROM DISTRIBUTION ANALYSIS

AGE

Statistics indicate symmetry and platykurtic (light tailed).


WEIGHT


Statistics show positive skew and leptokurtic (heavy tailed).


HEIGHT

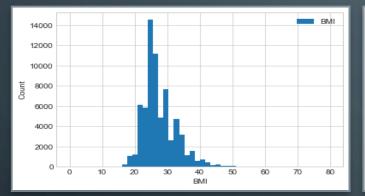
Statistics indicate negative skew and leptokurtic.

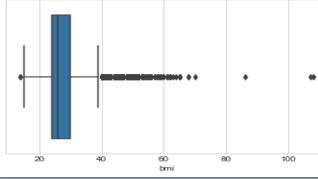
EXAMPLES FROM OUTLIER ANALYSIS

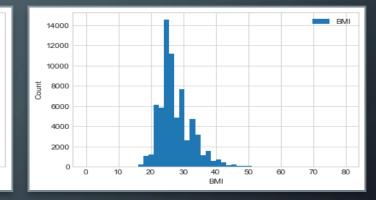
AGE

Age 29 was reasonable so not removed.

WEIGHT


Removed cases over 181 kg and less than 36 kg.


HEIGHT

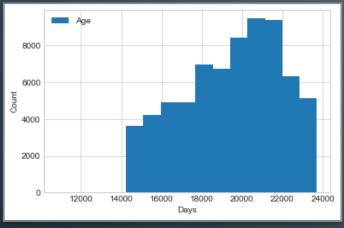

Removed top outlier to the right and all less than 121 cm or 4 ft.

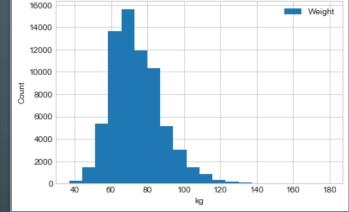
CALCULATED BMI

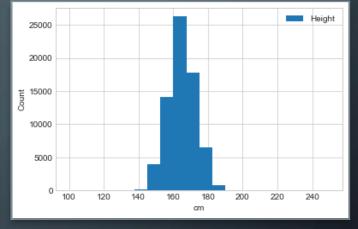
The formula for **BMI** is weight in kilograms divided by height in meters squared. Using this data set, that is weight divided by the square of the height after it is divided by 100.

INITIAL HISTOGRAM

Positive skew and leptokurtotic.


BOX PLOT - OUTLIERS


Removed extreme cases based on domain knowledge.

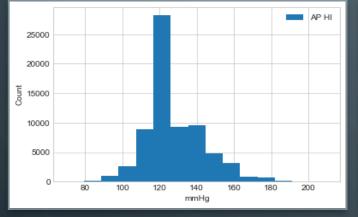

FINAL HISTOGRAM

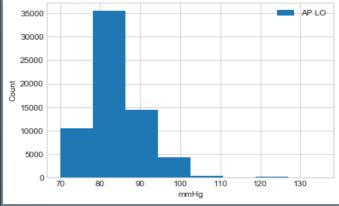
Slight kurtosis improvement which was hard to detect visually.

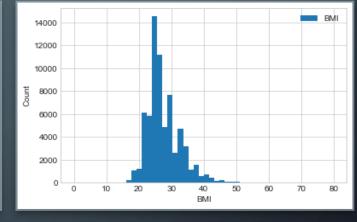
FOLLOW UP ANALYSIS POST OUTLIER REMOVAL

AGE

No changes to outlier or analysis.


WEIGHT


Lessened kurtosis.

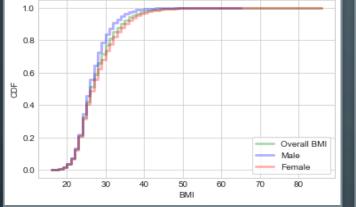

HEIGHT

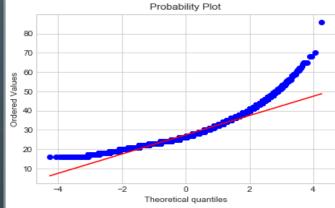
Most improved example with relatively normal statistics.

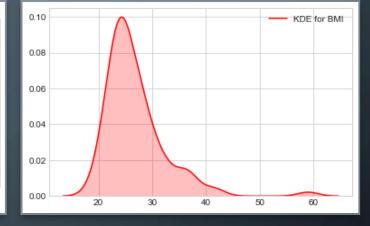
CONTINUED ANALYSIS POST OUTLIER REMOVAL

SYSTOLIC

Slight positive skew and leptokurtic.


DIASTOLIC


Relatively normal skew and leptokurtic.


BMI

Positive skew and leptokurtic.

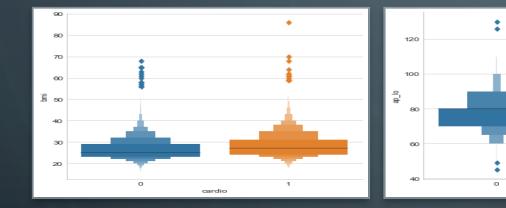
FURTHER EVIDENCE OF NON GAUSSIAN DISTRIBUTION FOR BMI

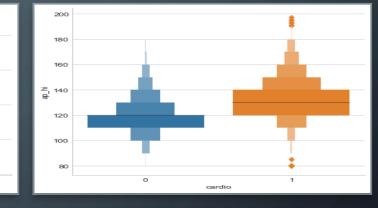
CDF

Plot indicates skew.

PROBABILITY PLOT

Note the deviations from the line.


Non-symmetrical indicating skew.


KDE

C

CARDIO VISUALIZATIONS USING BOXEN PLOTS

Due to the binary nature of having a cardio disease used in this analysis, enhanced box plots from the python based seaborn package were utilized for visualizations.

BMI - CARDIO

Correlation appears slightly noticeable.

DIASTOLIC - CARDIO

Indicates some positive correlation.

SYSTOLIC - CARDIO

Strongest visual of positive correlation.

Correlation Heatmap Using Spearman's Method

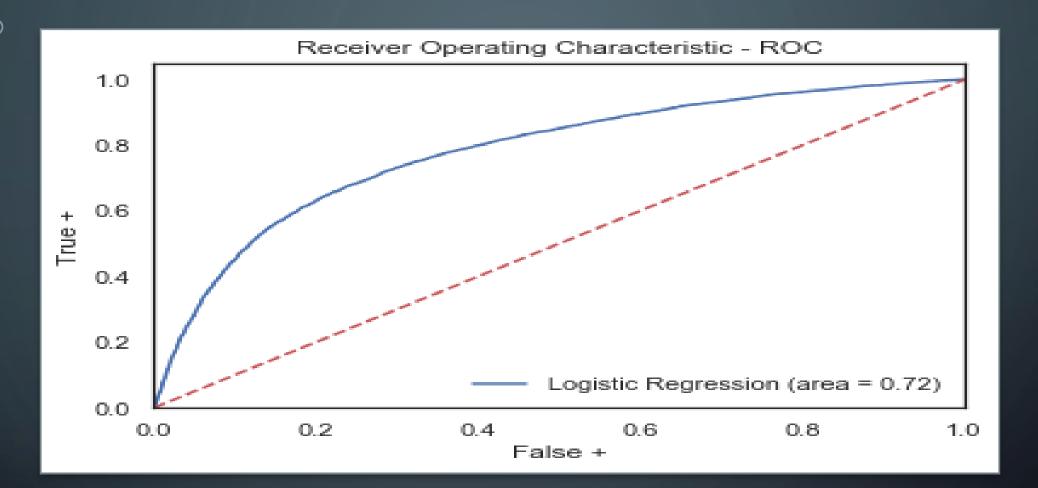
_															
gender	0.0026	-0.021													
height	-0.0014	-0.082	0.53												
weight	-0.0017	0.063	0.17	0.32											
ap_hi	0.0028	0.22	0.063	0.021	0.28										
ap_lo	-0.00075	0.16	0.064	0.031	0.25	0.74									
cholesterol	0.0055	0.14	-0.037	-0.06	0.14	0.21	0.17								
gluc	0.0024	0.092	-0.02	-0.025	0.11	0.11	0.08	0.41							
smoke	-0.0039	-0.047	0.34	0.2	0.071	0.027	0.023	0.015	-0.00045						
alco	0.0005	-0.029	0.17	0.097	0.068	0.034	0.035	0.04	0.017	0.34					
active	0.0036	-0.011	0.0055	-0.0086	-0.015	-0.0037	0.0018	0.0066	-0.0096	0.025	0.024				
cardio	0.0034	0.24	0.0066	-0.012	0.18	0.45	0.36	0.21	0.091	-0.017	-0.0089	-0.038			
bmi	-0.0013	0.11	-0.088	-0.18	0.85	0.28	0.25	0.17	0.13	-0.025	0.022	-0.0094	0.2		
	id	age	gender	height	weight	ap_hi	ap_lo o	cholester	ol gluc	smoke	alco	active	cardio	bmi	

- 0.24

- 0.16

- 0.08

- 0.00


- -0.08

- -0.16

id

age

0.0025

ROC Curve from Sklearn's LogisticRegression Function

CONCLUSION

CORRELATION BETWEEN BMI AND CARDIOVASCULAR DISEASE, WHILE STATISTICALLY SIGNIFICANT, WAS WEAK. SYSTOLIC BLOOD PRESSURE HAD A STRONGER CORRELATION AND WAS MORE USEFUL IN CONSTRUCTING PREDICTIVE MODELS.

"

Gender as confirmed by multiple tests did not prove to have a correlation with heart disease in this population. Given the unknown amount of sampling and other bias in this population set, I would discourage projecting this conclusion onto a larger population set such as the general public.